

peakdet: A toolbox for physiological peak detection analyses

This package is designed for use in the reproducible processing and analysis of
physiological data, like those collected from respiratory belts, pulse
photoplethysmography, or electrocardiogram (ECG/EKG) monitors.

[image: _images/peakdet.svg]
 [https://travis-ci.org/rmarkello/peakdet][image: _images/badge.svg]
 [https://codecov.io/gh/rmarkello/peakdet][image: _images/804a30d298cb3f6fc592a78513366485d1dc1f75.svg]
 [http://peakdet.readthedocs.io/en/latest][image: _images/license-Apache%202-blue.svg]
 [http://www.apache.org/licenses/LICENSE-2.0]
Overview

Physiological data are messy and prone to artifact (e.g., movement in
respiration and pulse, ectopic beats in ECG). Despite leaps and bounds in
recent algorithms for processing these data there still exists a need for
manual inspection to ensure such artifacts have been appropriately removed.
Because of this manual intervention step, understanding exactly what happened
to go from “raw” data to “analysis-ready” data can often be difficult or
impossible.

This toolbox, peakdet, aims to provide a set of tools that will work with a
variety of input data to reproducibly generate manually-corrected, analysis-
ready physiological data. If you’d like more information about the package,
including how to install it and some example instructions on its use, check out
our documentation [https://peakdet.readthedocs.io]!

Development and getting involved

This package has been largely developed in the spare time of a single graduate
student (@rmarkello [https://github.com/rmarkello]) with help from some
incredible contributors [https://github.com/physiopy/peakdet/graphs/contributors]. While it would be amazing if anyone else finds it helpful,
given the limited time constraints of graduate school, the current package is
not currently accepting requests for new features.

However, if you’re interested in getting involved in the project, we’re
thrilled to welcome new contributors! You should start by reading our
contributing guidelines [https://github.com/physiopy/peakdet/blob/master/CONTRIBUTING.md] and code of conduct [https://github.com/physiopy/peakdet/blob/master/CODE_OF_CONDUCT.md]. Once you’re done with that, take a look at
our issues [https://github.com/physiopy/peakdet/issues] to see if there’s
anything you might like to work on. Alternatively, if you’ve found a bug, are
experiencing a problem, or have a question, create a new issue with some
information about it!

License Information

This codebase is licensed under the Apache License, Version 2.0. The full
license can be found in the LICENSE [https://github.com/physiopy/peakdet/blob/master/LICENSE] file in the peakdet distribution. You may also
obtain a copy of the license at: http://www.apache.org/licenses/LICENSE-2.0.

Contents

	Installation and setup

	User guide

	API

Installation and setup

Basic installation

This package requires Python >= 3.6. Assuming you have the correct version of
Python installed, you can install peakdet by opening a terminal and running
the following:

git clone https://github.com/physiopy/peakdet.git
cd peakdet
python setup.py install

User guide

	1. The Physio data object

	2. Reproducibly loading data

	3. Processing physiological data
	3.1. Visual inspection

	3.2. Interpolation

	3.3. Temporal filtering

	3.4. Peak detection

	4. Manually editing data

	5. Reproducibly saving data
	5.1. Duplicating data

	5.2. Saving history
	5.2.1. Relative paths in history

	6. Deriving physiological metrics

1. The Physio data object

The primary funtionality of peakdet relies on its operations being
performed on physiological data loaded into a peakdet.Physio
object. So, before we get into using peakdet, its best to understand
a little bit about this helper class!

All you need to create a Physio object is a data array:

>>> import numpy as np
>>> from peakdet import Physio
>>> data = np.random.rand(5000)
>>> phys = Physio(data)
>>> print(phys)
Physio(size=5000, fs=nan)

However, it is strongly recommended that you provide the sampling rate of the
data as well. Many functions in peakdet require this information:

>>> sampling_rate = 100.0
>>> phys = Physio(data, fs=sampling_rate)
>>> print(phys)
Physio(size=5000, fs=100.0)

A Physio object is designed to be lightweight, and mostly exists
to store raw physiological data and its corresponding sampling rate in the same
place. In most instances it can be treated like a one-dimensional
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]; the underlying data can be accessed via slicing and
the object can be passed directly to most numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] functions:

>>> phys[:5]
array([0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581])
>>> np.mean(phys)
0.4991523987519155

Beyond being a simple container, however, Physio objects have a
few attributes that are of interest when working with real physiological data.
Importantly, they have a history that records all
operations performed on the data:

>>> from peakdet import operations
>>> phys = operations.filter_physio(phys, cutoffs=0.1, method='lowpass')
>>> phys.history
[('filter_physio', {'cutoffs': 0.1, 'method': 'lowpass'})]

Moreover, if you perform peak finding on a Physio object it will
store the indices of the detected peaks and
troughs alongside the object:

>>> phys = operations.peakfind_physio(phys)
>>> phys.peaks
array([477, 2120, 3253])
>>> phys.troughs
array([1413, 2611])

Next, we’ll move on to how you can load your data into a Physio
object in a more reproducible manner. Feel free to refer to the API
for more information.

2. Reproducibly loading data

In order to ensure that a data analysis pipeline with peakdet is
fully reproducible from start to finish, it is recommended that you load data
with the built-in peakdet IO functions.

The peakdet.load_physio() function is the most simple of these
functions, and accepts data stored as single-column text file. For example, if
we have a file ECG.csv that we might normally load with numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy]:

>>> import numpy as np
>>> np.loadtxt('ECG.csv')
array([1.66656, 1.53076, 1.38153, ..., -0.05188, -0.05249, -0.05554])

we can instead load it into a Physio object in one step with:

>>> from peakdet import load_physio
>>> ecg = load_physio('ECG.csv', fs=1000.)
>>> print(ecg)
Physio(size=44611, fs=1000.0)
>>> ecg.data
array([1.66656, 1.53076, 1.38153, ..., -0.05188, -0.05249, -0.05554])

This way, the loading of the data is retained in the object’s history:

>>> ecg.history
[('load_physio', {'allow_pickle': False, 'data': 'ECG.csv', 'dtype': None, 'fs': 1000.0, 'history': None})]

There are also a number of functions for loading data from “standard” formats.
For example, if your data were collected using the rtpeaks [https://github.com/rmarkello/rtpeaks] module, it might look like this:

>>> import pandas as pd
>>> pd.read_csv('rtpeaks.csv').head()
 time channel1 channel2 channel9
0 1.0 4.984436 0.020752 -0.333862
1 2.0 4.984131 0.021057 -0.328979
2 3.0 4.984131 0.021057 -0.325623
3 4.0 4.984436 0.021057 -0.323792
4 5.0 4.983826 0.025024 -0.319519

Instead, you can load it with peakdet.load_rtpeaks() so that it is
recorded in the object’s history:

>>> from peakdet import load_rtpeaks
>>> ecg = load_rtpeaks('rtpeaks.csv', fs=1000., channel=9)
>>> print(ecg)
Physio(size=40, fs=1000.0)
>>> ecg[:5]
array([-0.3338623 , -0.32897949, -0.32562256, -0.3237915 , -0.31951904])
>>> ecg.history
[('load_rtpeaks', {'channel': 9, 'fname': 'rtpeaks.csv', 'fs': 1000.0})]

3. Processing physiological data

There are a few common processing steps often performed when working with
physiological data:

	Visual inspection,

	Interpolation,

	Temporal filtering, and

	Peak detection

We have already seen that peakdet.operations has functions to perform
a few of these steps, but it is worth going into all of them in a bit more
detail:

3.1. Visual inspection

One of the first steps to do with raw data is visually inspect it. No amount of
processing can fix bad data, and so it’s good to check that your data quality
is appropriate before continuing. Plotting data can be achieved with
plot_physio():

>>> from peakdet import load_physio, operations
>>> data = load_physio('ECG.csv', fs=1000.0)
>>> ax = operations.plot_physio(data)
>>> ax.set_xlim(0, 10) # doctest: +SKIP

[image: ../_images/processing-1.png]

For now this will simply plot the raw waveform, but we’ll see later how this
function has some added benefits.

3.2. Interpolation

Raw data can often be collected at a sampling rate above what is biologically
meaningful. For example, human respiration is relatively slow, so acquiring it
at, for example, 250 Hz is often more than sufficient; when it is acquired at a
higher rate it can be quite noisy. In this case, we might want to interpolate
(or decimate) the data to a lower sampling rate, which can be done with
interpolate_physio():

>>> data = load_physio('RESP.csv', fs=1000.)
>>> print(data)
Physio(size=24000, fs=1000.0)
>>> data = operations.interpolate_physio(data, target_fs=250.)
>>> print(data)
Physio(size=6000, fs=250.0)

Note that the size of the data decreased by a factor of four (24000 to 6000),
the same as the decrease in sampling rate.

Data can also be upsampled via interpolation, though care must be taken in
interpreting the results of such a procedure:

>>> data = load_physio('PPG.csv', fs=25.0)
>>> print(data)
Physio(size=24000, fs=25.0)
>>> data = operations.interpolate_physio(data, target_fs=250.0)
>>> print(data)
Physio(size=240000, fs=250.0)

3.3. Temporal filtering

Once our data is at an appropriate sampling rate, we may want to apply a
temporal filter with filter_physio(). This function
supports lowpass, highpass, bandpass, and bandstop filters with user-specified
frequency cutoffs. First, let’s take a look at our interpolated PPG data:

>>> ax = operations.plot_physio(data)
>>> ax.set_xlim(0, 10) # doctest: +SKIP

[image: ../_images/processing-4.png]

If we’re going to do peak detection, it would be great to get rid of the venous
pulsations in the waveform to avoid potentially picking them up. If we apply a
lowpass filter with a 1.0 Hz cutoff we can do just that:

>>> data = operations.filter_physio(data, cutoffs=1.0, method='lowpass')
>>> ax = operations.plot_physio(data)
>>> ax.set_xlim(0, 10) # doctest: +SKIP

[image: ../_images/processing-5.png]

Filter settings are highly dependent on the data, so visually confirming that
the filter is performing as expected is important!

3.4. Peak detection

Many physiological processing pipelines requiring performing peak detection on
the data (e.g., to calculate heart rate, respiratory rate, pulse rate). That
process can be accomplished with peakfind_physio():

>>> data = operations.peakfind_physio(data, thresh=0.1, dist=100)
>>> data.peaks[:10]
array([164, 529, 901, 1278, 1628, 1983, 2381, 2774, 3153, 3486])
>>> data.troughs[:10]
array([356, 732, 1111, 1465, 1817, 2205, 2603, 2989, 3330, 3677])

The peaks and troughs attributes mark
the indices of the detected peaks and troughs in the data; these can be
converted to time series by dividing by the sampling frequency:

>>> data.peaks[:10] / data.fs
array([0.656, 2.116, 3.604, 5.112, 6.512, 7.932, 9.524, 11.096,
 12.612, 13.944])
>>> data.troughs[:10] / data.fs
array([1.424, 2.928, 4.444, 5.86 , 7.268, 8.82 , 10.412, 11.956,
 13.32 , 14.708])

Once these attributes are instantiated, subsequent calls to
plot_physio() will denote peaks with red dots and troughs
with green dots to aid visual inspection:

>>> ax = operations.plot_physio(data)
>>> ax.set_xlim(0, 10) # doctest: +SKIP

[image: ../_images/processing-7.png]

4. Manually editing data

Physiological data are messy and prone to artifact (e.g., movement in
respiration and pulse, ectopic beats in ECG). Despite leaps and bounds in
recent algorithms for processing these data there still exists a need for
manual inspection to ensure such artifacts have been appropriately removed.

To do this reproducibly, however, we want to ensure there is a record of these
manual changes. The edit_physio() function was designed
for this exact purpose. Invoking it will open up an interactive viewer that
allows you to remove peaks from noisy portions of the time series, or delete
peaks/troughs that were erroneously detected.

First, let’s process some pulse photoplethysmography data collected at 25 Hz:

>>> from peakdet import load_physio, operations
>>> data = load_physio('PPG.csv', fs=25.0)
>>> data = operations.interpolate_physio(data, target_fs=250.0)
>>> data = operations.filter_physio(data, cutoffs=1.0, method='lowpass')
>>> data = operations.peakfind_physio(data, thresh=0.1, dist=100)
>>> ax = operations.plot_physio(data)
>>> ax.set_xlim(0, 10) # doctest: +SKIP

[image: ../_images/editing-1.png]

The data looks good, but it would be nice to go through it all quickly and
ensure that there are no noisy sections or peaks/troughs that need to be
removed. We can do that easily with edit_physio():

>>> data = operations.edit_physio(data)

This function will open up an interactive viewer, which supports scrolling
through the time series (with the scroll wheel), rejection of noisy segments of
data (left click + drag, red highlight), and deleting peaks / troughs that were
erroneously detected and shouldn’t be considered at all (right click + drag,
blue highlight):

[image: ../_images/physio_edit.gif]
If you accidentally reject or delete peaks, you can undo the selection with
ctrl+z (or command+z if you’re on a Mac). The interactive viewer will
track your history of edits as long as it is open, so you can undo multiple
selections, if desired. Once done, you can close the interactive viewer by
pressing ctrl+q (command+q).

All edits performed in the editor are stored in the history
of the data object, as with other operations, ensuring a record of your manual
changes are retained.

5. Reproducibly saving data

Once you’ve gone through preprocessing and manually editing your data, you’ll
likely want to save your work. peakdet provides two ways to save your
outputs, depending on your data storage needs.

5.1. Duplicating data

If you don’t mind storing multiple copies of your data, you can simply save the
Physio object directly using peakdet.save_physio():

>>> from peakdet import save_physio
>>> path = save_physio('out.phys', data)

If later on you want to reload the processed data you can do so:

>>> from peakdet import load_physio
>>> data = load_physio('out.phys', allow_pickle=True)

Warning

peakdet.save_physio() uses numpy.savez() [https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez] to save the data
objects, meaning the generated files can actually be quite a bit larger
than the original data, themselves! Moreover, you NEED to pass the
allow_pickle=True parameter; this is turned off by default for safety
reasons, as you should never load pickle files not generated by a trusted
source.

5.2. Saving history

If you loaded all your data using the IO functions contained in
peakdet then your Physio objects should have a
complete history. If that’s the case, you can avoid saving
a duplicate copy of your entire data structure and just save the history! To do
this we can use peakdet.save_history():

>>> from peakdet import save_history
>>> print(data)
Physio(size=240000, fs=250.0)
>>> path = save_history('out.json', data)

The history is saved as a JSON [https://en.wikipedia.org/wiki/JSON] file. If
you’re unfamiliar, JSON files are plain text files that can store lists and
dictionaries–which is exactly what the history is!

We can then load in the history (and recreate the Physio object
it described) with peakdet.load_history():

>>> from peakdet import load_history
>>> reloaded_data = load_history('out.json')
>>> print(reloaded_data)
Physio(size=240000, fs=250.0)

The data object contains all the processing steps (including manual edits!)
that were performed on the original physiological data.

5.2.1. Relative paths in history

While the saved history file (in the above example, out.json) can be stored
anywhere (next to the raw data file typically makes sense!), extra care must be
taken when loading it back in. Because the history file contains a path to the
raw data file you must ensure that it is loaded with load_history()
from the same directory in which the raw data were originally loaded.

Let’s say that we have a directory tree that looks like the following:

./experiment
├── code/
│ └── preprocess.py
└── data/
 └── sub-001/
 └── PPG.csv

We navigate to this directory (cd experiment) and run python
code/preprocess.py, which generates a history file:

./experiment
├── code/
│ └── preprocess.py
└── data/
 └── sub-001/
 ├── PPG.csv
 └── PPG_history.json

Now, say we zip the entire experiment directory to send to a collaborator
who wants to run some analyses on our processed data. If they want to
regenerate the Physio objects we created from the saved history
files, they must call load_history() from within the experiment
directory—calling it from anywhere else in the directory tree will result in
a FileNotFoundError.

Note

In order to be able to reproducibly regenerate data using history files,
you need to ensure that you load your data using relative paths from the
get-go!

6. Deriving physiological metrics

Once you’ve processed your physiological data, chances are you want to use it
to calculate some derived metrics. peakdet currently only support
metrics related to heart rate variability [https://en.wikipedia.org/wiki/Heart_rate_variability], accessible through the peakdet.HRV
class.

Assuming you have a Physio object that contains some sort of
heart data and you’ve performed peak detection on it, you can provide it
directly to the HRV class:

>>> from peakdet import HRV
>>> metrics = HRV(data)
>>> print(f'{metrics.rmssd:.2f} ms')
26.61 ms

The HRV class contains many common heart rate variability metrics
including the root mean square of successive differences, as shown above. It
also calculates the R-R interval time series from the provided data, which can
be accessed via the rrint attribute. The corresponding
HRV.rrtime attribute details the times at which these intervals
occurred.

Take a look at the API for more information.

API

Physiological data

	
class peakdet.Physio(data, fs=None, history=None, metadata=None)[source]

	Class to hold physiological data and relevant information

	Parameters

	
	data (array_like) – Input data array

	fs (float, optional) – Sampling rate of data (Hz). Default: None

	history (list of tuples, optional) – Functions performed on data. Default: None

	metadata (dict, optional) – Metadata associated with data. Default: None

	
data

	Physiological waveform

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
fs

	Sampling rate of data in Hz

	Type

	float

	
history

	History of functions that have been performed on data, with relevant
parameters provided to functions.

	Type

	list of tuples

	
peaks

	Indices of peaks in data

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
troughs

	Indices of troughs in data

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Loading data

	
peakdet.load_physio(data, *, fs=None, dtype=None, history=None, allow_pickle=False)[source]

	Returns Physio object with provided data

	Parameters

	
	data (str or array_like or Physio_like) – Input physiological data. If array_like, should be one-dimensional

	fs (float, optional) – Sampling rate of data. Default: None

	dtype (data_type, optional) – Data type to convert data to, if conversion needed. Default: None

	history (list of tuples, optional) – Functions that have been performed on data. Default: None

	allow_pickle (bool, optional) – Whether to allow loading if data contains pickled objects. Default:
False

	Returns

	data – Loaded physiological data

	Return type

	peakdet.Physio

	Raises

	TypeError – If provided data is unable to be loaded

	
peakdet.load_history(file, verbose=False)[source]

	Loads history from file and replays it, creating new Physio instance

	Parameters

	
	file (str) – Path to input JSON file

	verbose (bool, optional) – Whether to print messages as history is being replayed. Default: False

	Returns

	file – Full filepath to saved output

	Return type

	str

	
peakdet.load_rtpeaks(fname, channel, fs)[source]

	Loads data file as obtained from the rtpeaks Python module

Data file fname should have a single, comma-delimited header of format:

time,channel#,channel#,…,channel#

Raw data should be stored in columnar format, also comma-delimited, beneath
this header. All data should be stored as integers. For more information,
see the rtpeaks homepage: https://github.com/rmarkello/rtpeaks.

	Parameters

	
	fname (str) – Path to data file to be loaded

	channel (int) – Integer corresponding to the channel number in fname from which data
should be loaded

	fs (float) – Sampling rate at which fname was acquired

	Returns

	data – Loaded physiological data

	Return type

	peakdet.Physio

Processing data

Functions for processing and interpreting physiological data

	
peakdet.operations.interpolate_physio(data, target_fs, *, kind='cubic')[source]

	Interpolates data to desired sampling rate target_fs

	Parameters

	
	data (Physio_like) – Input physiological data to be interpolated

	target_fs (float) – Desired sampling rate for data

	kind (str or int, optional) – Type of interpolation to perform. Must be one of available kinds in
scipy.interpolate.interp1d(). Default: ‘cubic’

	Returns

	interp – Interpolated input data

	Return type

	peakdet.Physio

	
peakdet.operations.filter_physio(data, cutoffs, method, *, order=3)[source]

	Applies an order-order digital method Butterworth filter to data

	Parameters

	
	data (Physio_like) – Input physiological data to be filtered

	cutoffs (int or list) – If method is ‘lowpass’ or ‘highpass’, an integer specifying the lower
or upper bound of the filter (in Hz). If method is ‘bandpass’ or
‘bandstop’, a list specifying the lower and upper bound of the filter
(in Hz).

	method ({'lowpass', 'highpass', 'bandpass', 'bandstop'}) – The type of filter to apply to data

	order (int, optional) – Order of filter to be applied. Default: 3

	Returns

	filtered – Filtered input data

	Return type

	peakdet.Physio

	
peakdet.operations.peakfind_physio(data, *, thresh=0.2, dist=None)[source]

	Performs peak and trough detection on data

	Parameters

	
	data (Physio_like) – Input data in which to find peaks

	thresh (float [0,1], optional) – Relative height threshold a data point must surpass to be classified as
a peak. Default: 0.2

	dist (int, optional) – Distance in indices that peaks must be separated by in data. If None,
this is estimated. Default: None

	Returns

	peaks – Input data with detected peaks and troughs

	Return type

	peakdet.Physio

	
peakdet.operations.plot_physio(data, *, ax=None)[source]

	Plots data and associated peaks / troughs

	Parameters

	
	data (Physio_like) – Physiological data to plot

	ax (matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes], optional) – Axis on which to plot data. If None, a new axis is created. Default:
None

	Returns

	ax – Axis with plotted data

	Return type

	matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes]

	
peakdet.operations.edit_physio(data)[source]

	Opens interactive plot with data to permit manual editing of time series

	Parameters

	data (Physio_like) – Physiological data to be edited

	Returns

	edited – Input data with manual edits

	Return type

	peakdet.Physio

Saving data

	
peakdet.save_physio(fname, data)[source]

	Saves data to fname

	Parameters

	
	fname (str) – Path to output file; .phys will be appended if necessary

	data (Physio_like) – Data to be saved to file

	Returns

	fname – Full filepath to saved output

	Return type

	str

	
peakdet.save_history(file, data)[source]

	Saves history of physiological data to file

Saved file can be replayed with peakdet.load_history

	Parameters

	
	file (str) – Path to output file; .json will be appended if necessary

	data (Physio_like) – Data with history to be saved to file

	Returns

	file – Full filepath to saved output

	Return type

	str

Derived metrics

	
class peakdet.HRV(data)[source]

	Class for calculating various HRV statistics

	Parameters

	data (Physio_like) – Physiological data object with detected peaks and troughs

	
rrint

	R-R intervals derived from data (sometimes referred to as N-N
intervals in derived metrics)

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
rrtime

	Time stamps of rrint

	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
avgnn

	Average heart rate (N-N interval)

	Type

	float

	
sdnn

	Standard deviation of heart rate (N-N intervals)

	Type

	float

	
rmssd

	Root mean square of successive differences

	Type

	float

	
sdsd

	Standard deviation of successive differences

	Type

	float

	
nn50

	Number of N-N intervals greater than 50ms

	Type

	float

	
pnn50

	Percent of N-N intervals greater than 50ms

	Type

	float

	
nn20

	Number of N-N intervals greater than 20ms

	Type

	float

	
pnn20

	Percent of N-N intervals greater than 20ms

	Type

	float

	
hf

	High-frequency power of R-R intervals, summed across 0.15-0.40 Hz

	Type

	float

	
hf_log

	Log of hf

	Type

	float

	
lf

	Low-frequency power of R-R intervals, summed across 0.04-0.15 Hz

	Type

	float

	
lf_log

	Log of lf

	Type

	float

	
vlf

	Very low frequency power of R-R intervals, summed across 0-0.04 Hz

	Type

	float

	
vlf_log

	Log of vlf

	Type

	float

	
lftohf

	Ratio of lf over hf

	Type

	float

	
hf_peak

	Peak frequency in hf band (0.15-0.40 Hz)

	Type

	float

	
lf_peak

	Peak frequency in lf band (0.04-0.15 Hz)

	Type

	float

Notes

Uses scipy.signal.welch for calculation of frequency-based statistics

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 peakdet	

 	
 	
 peakdet.operations	

Index

 A
 | D
 | E
 | F
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	avgnn (peakdet.HRV attribute)

D

 	
 	data (peakdet.Physio attribute)

E

 	
 	edit_physio() (in module peakdet.operations)

F

 	
 	filter_physio() (in module peakdet.operations)

 	
 	fs (peakdet.Physio attribute)

H

 	
 	hf (peakdet.HRV attribute)

 	hf_log (peakdet.HRV attribute)

 	
 	hf_peak (peakdet.HRV attribute)

 	history (peakdet.Physio attribute)

 	HRV (class in peakdet)

I

 	
 	interpolate_physio() (in module peakdet.operations)

L

 	
 	lf (peakdet.HRV attribute)

 	lf_log (peakdet.HRV attribute)

 	lf_peak (peakdet.HRV attribute)

 	
 	lftohf (peakdet.HRV attribute)

 	load_history() (in module peakdet)

 	load_physio() (in module peakdet)

 	load_rtpeaks() (in module peakdet)

N

 	
 	nn20 (peakdet.HRV attribute)

 	
 	nn50 (peakdet.HRV attribute)

P

 	
 	peakdet (module)

 	peakdet.operations (module)

 	peakfind_physio() (in module peakdet.operations)

 	peaks (peakdet.Physio attribute)

 	
 	Physio (class in peakdet)

 	plot_physio() (in module peakdet.operations)

 	pnn20 (peakdet.HRV attribute)

 	pnn50 (peakdet.HRV attribute)

R

 	
 	rmssd (peakdet.HRV attribute)

 	
 	rrint (peakdet.HRV attribute)

 	rrtime (peakdet.HRV attribute)

S

 	
 	save_history() (in module peakdet)

 	save_physio() (in module peakdet)

 	
 	sdnn (peakdet.HRV attribute)

 	sdsd (peakdet.HRV attribute)

T

 	
 	troughs (peakdet.Physio attribute)

V

 	
 	vlf (peakdet.HRV attribute)

 	
 	vlf_log (peakdet.HRV attribute)

 All modules for which code is available

	peakdet.analytics

	peakdet.external

	peakdet.io

	peakdet.operations

	peakdet.physio

 Source code for peakdet.analytics

-*- coding: utf-8 -*-
"""
Functions and classes for generating analytics on physiological data
"""

import numpy as np
from scipy.signal import welch
from scipy.interpolate import interp1d

[docs]class HRV():
 """
 Class for calculating various HRV statistics

 Parameters

 data : Physio_like
 Physiological data object with detected peaks and troughs

 Attributes

 rrint : :obj:`numpy.ndarray`
 R-R intervals derived from `data` (sometimes referred to as N-N
 intervals in derived metrics)
 rrtime : :obj:`numpy.ndarray`
 Time stamps of `rrint`
 avgnn : float
 Average heart rate (N-N interval)
 sdnn : float
 Standard deviation of heart rate (N-N intervals)
 rmssd : float
 Root mean square of successive differences
 sdsd : float
 Standard deviation of successive differences
 nn50 : float
 Number of N-N intervals greater than 50ms
 pnn50 : float
 Percent of N-N intervals greater than 50ms
 nn20 : float
 Number of N-N intervals greater than 20ms
 pnn20 : float
 Percent of N-N intervals greater than 20ms
 hf : float
 High-frequency power of R-R intervals, summed across 0.15-0.40 Hz
 hf_log : float
 Log of `hf`
 lf : float
 Low-frequency power of R-R intervals, summed across 0.04-0.15 Hz
 lf_log : float
 Log of `lf`
 vlf : float
 Very low frequency power of R-R intervals, summed across 0-0.04 Hz
 vlf_log : float
 Log of `vlf`
 lftohf : float
 Ratio of `lf` over `hf`
 hf_peak : float
 Peak frequency in `hf` band (0.15-0.40 Hz)
 lf_peak : float
 Peak frequency in `lf` band (0.04-0.15 Hz)

 Notes

 Uses scipy.signal.welch for calculation of frequency-based statistics
 """

 def __init__(self, data):
 self.data = data
 func = interp1d(self.rrtime, self.rrint * 1000, kind='cubic')
 irrt = np.arange(self.rrtime[0], self.rrtime[-1], 1. / 4.)
 self._irri = func(irrt)

 @property
 def rrtime(self):
 """ Times of R-R intervals (in seconds) """
 if len(self.data.peaks):
 diff = ((self.data._masked[:-1] + self.data._masked[1:])
 / (2 * self.data.fs))
 return diff.compressed()

 @property
 def rrint(self):
 """ Length of R-R intervals (in seconds) """
 if len(self.data.peaks):
 return (np.diff(self.data._masked) / self.data.fs).compressed()

 @property
 def _sd(self):
 return np.diff(np.diff(self.data._masked)).compressed()

 @property
 def _fft(self):
 return welch(self._irri, nperseg=120, fs=4.0, scaling='spectrum')

 @property
 def avgnn(self):
 return self.rrint.mean() * 1000

 @property
 def sdnn(self):
 return self.rrint.std() * 1000

 @property
 def rmssd(self):
 return np.sqrt((self._sd**2).mean())

 @property
 def sdsd(self):
 return self._sd.std()

 @property
 def nn50(self):
 return np.argwhere(self._sd > 50.).size

 @property
 def pnn50(self):
 return self.nn50 / self.rrint.size

 @property
 def nn20(self):
 return np.argwhere(self._sd > 20.).size

 @property
 def pnn20(self):
 return self.nn20 / self.rrint.size

 @property
 def _hf(self):
 fx, px = self._fft
 return px[np.logical_and(fx >= 0.15, fx < 0.40)]

 @property
 def _lf(self):
 fx, px = self._fft
 return px[np.logical_and(fx >= 0.04, fx < 0.15)]

 @property
 def _vlf(self):
 fx, px = self._fft
 return px[np.logical_and(fx >= 0., fx < 0.04)]

 @property
 def hf(self):
 return sum(self._hf)

 @property
 def hf_log(self):
 return np.log(self.hf)

 @property
 def lf(self):
 return sum(self._lf)

 @property
 def lf_log(self):
 return np.log(self.lf)

 @property
 def vlf(self):
 return sum(self._vlf)

 @property
 def vlf_log(self):
 return np.log(self.vlf)

 @property
 def lftohf(self):
 return self.lf / self.hf

 @property
 def hf_peak(self):
 fx, px = self._fft
 return fx[np.argmax(self._hf)]

 @property
 def lf_peak(self):
 fx, px = self._fft
 return fx[np.argmax(self._lf)]

 Source code for peakdet.external

-*- coding: utf-8 -*-
"""
Functions for interacting with physiological data acquired by external packages
"""

import warnings
import numpy as np
from peakdet import physio, utils

[docs]@utils.make_operation(exclude=[])
def load_rtpeaks(fname, channel, fs):
 """
 Loads data file as obtained from the ``rtpeaks`` Python module

 Data file `fname` should have a single, comma-delimited header of format:

 time,channel#,channel#,...,channel#

 Raw data should be stored in columnar format, also comma-delimited, beneath
 this header. All data should be stored as integers. For more information,
 see the ``rtpeaks`` homepage: https://github.com/rmarkello/rtpeaks.

 Parameters

 fname : str
 Path to data file to be loaded
 channel : int
 Integer corresponding to the channel number in `fname` from which data
 should be loaded
 fs : float
 Sampling rate at which `fname` was acquired

 Returns

 data : :class:`peakdet.Physio`
 Loaded physiological data
 """

 if fname.startswith('/'):
 warnings.warn('Provided file seems to be an absolute path. In order '
 'to ensure full reproducibility it is recommended that '
 'a relative path is provided.')

 with open(fname, 'r') as src:
 header = src.readline().strip().split(',')

 col = header.index('channel{}'.format(channel))
 data = np.loadtxt(fname, usecols=col, skiprows=1, delimiter=',')
 phys = physio.Physio(data, fs=fs)

 return phys

 Source code for peakdet.io

-*- coding: utf-8 -*-
"""
Functions for loading and saving data and analyses
"""

import json
import os.path as op
import warnings
import numpy as np
from peakdet import physio, utils

EXPECTED = ['data', 'fs', 'history', 'metadata']

[docs]def load_physio(data, *, fs=None, dtype=None, history=None,
 allow_pickle=False):
 """
 Returns `Physio` object with provided data

 Parameters

 data : str or array_like or Physio_like
 Input physiological data. If array_like, should be one-dimensional
 fs : float, optional
 Sampling rate of `data`. Default: None
 dtype : data_type, optional
 Data type to convert `data` to, if conversion needed. Default: None
 history : list of tuples, optional
 Functions that have been performed on `data`. Default: None
 allow_pickle : bool, optional
 Whether to allow loading if `data` contains pickled objects. Default:
 False

 Returns

 data: :class:`peakdet.Physio`
 Loaded physiological data

 Raises

 TypeError
 If provided `data` is unable to be loaded
 """

 # first check if the file was made with `save_physio`; otherwise, try to
 # load it as a plain text file and instantiate a history
 if isinstance(data, str):
 try:
 inp = dict(np.load(data, allow_pickle=allow_pickle))
 for attr in EXPECTED:
 try:
 inp[attr] = inp[attr].dtype.type(inp[attr])
 except KeyError:
 raise ValueError('Provided npz file {} must have all of '
 'the following attributes: {}'
 .format(data, EXPECTED))
 # fix history, which needs to be list-of-tuple
 if inp['history'] is not None:
 inp['history'] = list(map(tuple, inp['history']))
 except (IOError, OSError, ValueError):
 inp = dict(data=np.loadtxt(data),
 history=[utils._get_call(exclude=[])])
 phys = physio.Physio(**inp)
 # if we got a numpy array, load that into a Physio object
 elif isinstance(data, np.ndarray):
 if history is None:
 warnings.warn('Loading data from a numpy array without providing a'
 'history will render reproducibility functions '
 'useless! Continuing anyways.')
 phys = physio.Physio(np.asarray(data, dtype=dtype), fs=fs,
 history=history)
 # create a new Physio object out of a provided Physio object
 elif isinstance(data, physio.Physio):
 phys = utils.new_physio_like(data, data.data, fs=fs, dtype=dtype)
 phys._history += [utils._get_call()]
 else:
 raise TypeError('Cannot load data of type {}'.format(type(data)))

 # reset sampling rate, as requested
 if fs is not None and fs != phys.fs:
 if not np.isnan(phys.fs):
 warnings.warn('Provided sampling rate does not match loaded rate. '
 'Resetting loaded sampling rate {} to provided {}'
 .format(phys.fs, fs))
 phys._fs = fs
 # coerce datatype, if needed
 if dtype is not None:
 phys._data = np.asarray(phys[:], dtype=dtype)

 return phys

[docs]def save_physio(fname, data):
 """
 Saves `data` to `fname`

 Parameters

 fname : str
 Path to output file; .phys will be appended if necessary
 data : Physio_like
 Data to be saved to file

 Returns

 fname : str
 Full filepath to saved output
 """

 from peakdet.utils import check_physio

 data = check_physio(data)
 fname += '.phys' if not fname.endswith('.phys') else ''
 with open(fname, 'wb') as dest:
 hist = data.history if data.history != [] else None
 np.savez_compressed(dest, data=data.data, fs=data.fs,
 history=hist, metadata=data._metadata)

 return fname

[docs]def load_history(file, verbose=False):
 """
 Loads history from `file` and replays it, creating new Physio instance

 Parameters

 file : str
 Path to input JSON file
 verbose : bool, optional
 Whether to print messages as history is being replayed. Default: False

 Returns

 file : str
 Full filepath to saved output
 """

 # import inside function for safety!
 # we'll likely be replaying some functions from within this module...
 import peakdet

 # grab history from provided JSON file
 with open(file, 'r') as src:
 history = json.load(src)

 # replay history from beginning and return resultant Physio object
 data = None
 for (func, kwargs) in history:
 if verbose:
 print('Rerunning {}'.format(func))
 # loading functions don't have `data` input because it should be the
 # first thing in `history` (when the data was originally loaded!).
 # for safety, check if `data` is None; someone could have potentially
 # called load_physio on a Physio object (which is a valid, albeit
 # confusing, thing to do)
 if 'load' in func and data is None:
 if not op.exists(kwargs['data']):
 if kwargs['data'].startswith('/'):
 msg = ('Perhaps you are trying to load a history file '
 'that was generated with an absolute path?')
 else:
 msg = ('Perhaps you are trying to load a history file '
 'that was generated from a different directory?')
 raise FileNotFoundError('{} does not exist. {}'
 .format(kwargs['data'], msg))
 data = getattr(peakdet, func)(**kwargs)
 else:
 data = getattr(peakdet, func)(data, **kwargs)

 return data

[docs]def save_history(file, data):
 """
 Saves history of physiological `data` to `file`

 Saved file can be replayed with `peakdet.load_history`

 Parameters

 file : str
 Path to output file; .json will be appended if necessary
 data : Physio_like
 Data with history to be saved to file

 Returns

 file : str
 Full filepath to saved output
 """

 from peakdet.utils import check_physio

 data = check_physio(data)
 if len(data.history) == 0:
 warnings.warn('History of provided Physio object is empty. Saving '
 'anyway, but reloading this file will result in an '
 'error.')
 file += '.json' if not file.endswith('.json') else ''
 with open(file, 'w') as dest:
 json.dump(data.history, dest, indent=4)

 return file

 Source code for peakdet.operations

-*- coding: utf-8 -*-
"""
Functions for processing and interpreting physiological data
"""

import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate, signal
from peakdet import editor, utils

[docs]@utils.make_operation()
def filter_physio(data, cutoffs, method, *, order=3):
 """
 Applies an `order`-order digital `method` Butterworth filter to `data`

 Parameters

 data : Physio_like
 Input physiological data to be filtered
 cutoffs : int or list
 If `method` is 'lowpass' or 'highpass', an integer specifying the lower
 or upper bound of the filter (in Hz). If method is 'bandpass' or
 'bandstop', a list specifying the lower and upper bound of the filter
 (in Hz).
 method : {'lowpass', 'highpass', 'bandpass', 'bandstop'}
 The type of filter to apply to `data`
 order : int, optional
 Order of filter to be applied. Default: 3

 Returns

 filtered : :class:`peakdet.Physio`
 Filtered input `data`
 """

 _valid_methods = ['lowpass', 'highpass', 'bandpass', 'bandstop']

 data = utils.check_physio(data, ensure_fs=True)
 if method not in _valid_methods:
 raise ValueError('Provided method {} is not permitted; must be in {}.'
 .format(method, _valid_methods))

 cutoffs = np.array(cutoffs)
 if method in ['lowpass', 'highpass'] and cutoffs.size != 1:
 raise ValueError('Cutoffs must be length 1 when using {} filter'
 .format(method))
 elif method in ['bandpass', 'bandstop'] and cutoffs.size != 2:
 raise ValueError('Cutoffs must be length 2 when using {} filter'
 .format(method))

 nyq_cutoff = cutoffs / (data.fs * 0.5)
 if np.any(nyq_cutoff > 1):
 raise ValueError('Provided cutoffs {} are outside of the Nyquist '
 'frequency for input data with sampling rate {}.'
 .format(cutoffs, data.fs))

 b, a = signal.butter(int(order), nyq_cutoff, btype=method)
 filtered = utils.new_physio_like(data, signal.filtfilt(b, a, data))

 return filtered

[docs]@utils.make_operation()
def interpolate_physio(data, target_fs, *, kind='cubic'):
 """
 Interpolates `data` to desired sampling rate `target_fs`

 Parameters

 data : Physio_like
 Input physiological data to be interpolated
 target_fs : float
 Desired sampling rate for `data`
 kind : str or int, optional
 Type of interpolation to perform. Must be one of available kinds in
 :func:`scipy.interpolate.interp1d`. Default: 'cubic'

 Returns

 interp : :class:`peakdet.Physio`
 Interpolated input `data`
 """

 data = utils.check_physio(data, ensure_fs=True)

 factor = target_fs / data.fs

 # generate original and target "time" series
 t_orig = np.linspace(0, len(data) / data.fs, len(data))
 t_new = np.linspace(0, len(data) / data.fs, int(len(data) * factor))

 # interpolate data and generate new Physio object
 interp = interpolate.interp1d(t_orig, data, kind=kind)(t_new)
 interp = utils.new_physio_like(data, interp, fs=target_fs)

 return interp

[docs]@utils.make_operation()
def peakfind_physio(data, *, thresh=0.2, dist=None):
 """
 Performs peak and trough detection on `data`

 Parameters

 data : Physio_like
 Input data in which to find peaks
 thresh : float [0,1], optional
 Relative height threshold a data point must surpass to be classified as
 a peak. Default: 0.2
 dist : int, optional
 Distance in indices that peaks must be separated by in `data`. If None,
 this is estimated. Default: None

 Returns

 peaks : :class:`peakdet.Physio`
 Input `data` with detected peaks and troughs
 """

 ensure_fs = True if dist is None else False
 data = utils.check_physio(data, ensure_fs=ensure_fs, copy=True)

 # first pass peak detection to get approximate distance between peaks
 cdist = data.fs // 4 if dist is None else dist
 thresh = np.squeeze(np.diff(np.percentile(data, [5, 95]))) * thresh
 locs, heights = signal.find_peaks(data[:], distance=cdist, height=thresh)

 # second, more thorough peak detection
 cdist = np.diff(locs).mean() // 2
 heights = np.percentile(heights['peak_heights'], 1)
 locs, heights = signal.find_peaks(data[:], distance=cdist, height=heights)
 data._metadata['peaks'] = locs
 # perform trough detection based on detected peaks
 data._metadata['troughs'] = utils.check_troughs(data, data.peaks)

 return data

@utils.make_operation()
def delete_peaks(data, remove):
 """
 Deletes peaks in `remove` from peaks stored in `data`

 Parameters

 data : Physio_like
 remove : array_like

 Returns

 data : Physio_like
 """

 data = utils.check_physio(data, ensure_fs=False, copy=True)
 data._metadata['peaks'] = np.setdiff1d(data._metadata['peaks'], remove)
 data._metadata['troughs'] = utils.check_troughs(data, data.peaks)

 return data

@utils.make_operation()
def reject_peaks(data, remove):
 """
 Marks peaks in `remove` as rejected artifacts in `data`

 Parameters

 data : Physio_like
 remove : array_like

 Returns

 data : Physio_like
 """

 data = utils.check_physio(data, ensure_fs=False, copy=True)
 data._metadata['reject'] = np.append(data._metadata['reject'], remove)
 data._metadata['troughs'] = utils.check_troughs(data, data.peaks)

 return data

[docs]def edit_physio(data):
 """
 Opens interactive plot with `data` to permit manual editing of time series

 Parameters

 data : Physio_like
 Physiological data to be edited

 Returns

 edited : :class:`peakdet.Physio`
 Input `data` with manual edits
 """

 data = utils.check_physio(data, ensure_fs=True)

 # no point in manual edits if peaks/troughs aren't defined
 if not (len(data.peaks) and len(data.troughs)):
 return

 # perform manual editing
 edits = editor._PhysioEditor(data)
 plt.show(block=True)
 delete, reject = sorted(edits.deleted), sorted(edits.rejected)

 # replay editing on original provided data object
 if reject is not None:
 data = reject_peaks(data, remove=reject)
 if delete is not None:
 data = delete_peaks(data, remove=delete)

 return data

[docs]def plot_physio(data, *, ax=None):
 """
 Plots `data` and associated peaks / troughs

 Parameters

 data : Physio_like
 Physiological data to plot
 ax : :class:`matplotlib.axes.Axes`, optional
 Axis on which to plot `data`. If None, a new axis is created. Default:
 None

 Returns

 ax : :class:`matplotlib.axes.Axes`
 Axis with plotted `data`
 """

 # generate x-axis time series
 fs = 1 if np.isnan(data.fs) else data.fs
 time = np.arange(0, len(data) / fs, 1 / fs)
 if ax is None:
 fig, ax = plt.subplots(1, 1)
 # plot data with peaks + troughs, as appropriate
 ax.plot(time, data, 'b',
 time[data.peaks], data[data.peaks], '.r',
 time[data.troughs], data[data.troughs], '.g')

 return ax

 Source code for peakdet.physio

-*- coding: utf-8 -*-
"""
Helper class for holding physiological data and associated metadata inforamtion
"""

import numpy as np

[docs]class Physio():
 """
 Class to hold physiological data and relevant information

 Parameters

 data : array_like
 Input data array
 fs : float, optional
 Sampling rate of `data` (Hz). Default: None
 history : list of tuples, optional
 Functions performed on `data`. Default: None
 metadata : dict, optional
 Metadata associated with `data`. Default: None

 Attributes

 data : :obj:`numpy.ndarray`
 Physiological waveform
 fs : float
 Sampling rate of `data` in Hz
 history : list of tuples
 History of functions that have been performed on `data`, with relevant
 parameters provided to functions.
 peaks : :obj:`numpy.ndarray`
 Indices of peaks in `data`
 troughs : :obj:`numpy.ndarray`
 Indices of troughs in `data`
 """

 def __init__(self, data, fs=None, history=None, metadata=None):
 self._data = np.asarray(data).squeeze()
 if self.data.ndim > 1:
 raise ValueError('Provided data dimensionality {} > 1.'
 .format(self.data.ndim))
 if not np.issubdtype(self.data.dtype, np.number):
 raise ValueError('Provided data of type {} is not numeric.'
 .format(self.data.dtype))
 self._fs = np.float64(fs)
 self._history = [] if history is None else history
 if (not isinstance(self._history, list)
 or any([not isinstance(f, tuple) for f in self._history])):
 raise TypeError('Provided history {} must be a list-of-tuples. '
 'Please check inputs.'.format(history))
 if metadata is not None:
 if not isinstance(metadata, dict):
 raise TypeError('Provided metadata {} must be dict-like.'
 .format(metadata))
 for k in ['peaks', 'troughs', 'reject']:
 metadata.setdefault(k, np.empty(0, dtype=int))
 if not isinstance(metadata.get(k), np.ndarray):
 try:
 metadata[k] = np.asarray(metadata.get(k), dtype=int)
 except TypeError:
 raise TypeError('Provided metadata must be dict-like'
 'with integer array entries.')
 self._metadata = dict(**metadata)
 else:
 self._metadata = dict(peaks=np.empty(0, dtype=int),
 troughs=np.empty(0, dtype=int),
 reject=np.empty(0, dtype=int))

 def __array__(self):
 return self.data

 def __getitem__(self, slicer):
 return self.data[slicer]

 def __len__(self):
 return len(self.data)

 def __str__(self):
 return '{name}(size={size}, fs={fs})'.format(
 name=self.__class__.__name__,
 size=self.data.size,
 fs=self.fs
)

 __repr__ = __str__

 @property
 def data(self):
 """ Physiological data """
 return self._data

 @property
 def fs(self):
 """ Sampling rate of data (Hz) """
 return self._fs

 @property
 def history(self):
 """ Functions that have been performed on / modified `data` """
 return self._history

 @property
 def peaks(self):
 """ Indices of detected peaks in `data` """
 return self._masked.compressed()

 @property
 def troughs(self):
 """ Indices of detected troughs in `data` """
 return self._metadata['troughs']

 @property
 def _masked(self):
 return np.ma.masked_array(self._metadata['peaks'],
 mask=np.isin(self._metadata['peaks'],
 self._metadata['reject']))

 _static/file.png

_static/minus.png

_images/processing-1.png
25

20

15

10

0s

00

10

_static/up-pressed.png

_images/processing-4.png
2000

1500

1000

500

-500

10

_static/up.png

_static/plus.png

_images/physio_edit.gif
- o
=
il
——-
—=
—d
p—e..
n-..w.n!v.tn
COE e

)

1

i B

1000

800

600

400

£

_images/processing-5.png
800

600

400

200

-200

~400

-600

10

_images/processing-7.png
800

600

400

200

-200

~400

-600

10

_images/editing-1.png
800

600

400

200

-200

~400

-600

10

nav.xhtml

 Table of Contents

 		
 peakdet: A toolbox for physiological peak detection analyses

 		
 Installation and setup

 		
 Basic installation

 		
 User guide

 		
 The Physio data object

 		
 Reproducibly loading data

 		
 Processing physiological data

 		
 Visual inspection

 		
 Interpolation

 		
 Temporal filtering

 		
 Peak detection

 		
 Manually editing data

 		
 Reproducibly saving data

 		
 Duplicating data

 		
 Saving history

 		
 Deriving physiological metrics

 		
 API

 		
 Physiological data

 		
 Loading data

 		
 Processing data

 		
 Saving data

 		
 Derived metrics

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

